got stationary wireframe sphere !

This commit is contained in:
Sakimori 2021-06-28 16:00:33 -04:00
parent 6b95683fcd
commit 95f71c3430
2 changed files with 43 additions and 13 deletions

View file

@ -88,7 +88,7 @@ if __name__=="__main__":
pygame.init()
pygame.display.set_caption("Spinny")
window = pygame.display.set_mode((600, 600))
window = pygame.display.set_mode((900, 900))
resolutionDownscaling = 2
pygame.display.flip()
@ -97,7 +97,7 @@ if __name__=="__main__":
running = True
display = False
thisEarth = deepcopy(Planet.Earth)
sat = OrbitingBody(Point(config()["earthRadius"] * 1.1, 0, 0), Point(2000,6000,-2500), "BoSLOO", 3, thisEarth)
sat = OrbitingBody(Point(config()["earthRadius"] * 1.5, 0, 0), Point(2000,6000,-2500), "BoSLOO", 3, thisEarth)
orbitlines = []
renderObjects = [thisEarth, sat, orbitlines]
imageThread = threading.Thread()
@ -110,7 +110,7 @@ if __name__=="__main__":
elif event.type == pygame.MOUSEBUTTONDOWN:
if not display:
display = True
camera = Camera(window, Point(0, 0, 5 * config()["earthRadius"]), thisEarth, renderObjects)
camera = Camera(window, Point(0, 0, 4 * config()["earthRadius"]), thisEarth, renderObjects)
pygame.draw.circle(window, (255,255,255), pygame.mouse.get_pos(), 100)
camera.renderFrame()
pygame.display.flip()

View file

@ -1,10 +1,17 @@
import numpy, pygame, math
import pygame.freetype
class Point:
"""Numpy 3-vec"""
def __init__(self, x, y, z):
self.vector = numpy.array([x, y, z])
def polar(self):
rho = math.sqrt(self.vector[0] ** 2 + self.vector[1] ** 2 + self.vector[2] ** 2)
theta = math.atan(self.vector[2]/self.vector[0])
phi = math.acos((self.vector[1])/(rho))
return [rho, theta, phi]
def magnitude(self):
return numpy.linalg.norm(self.vector)
@ -79,6 +86,7 @@ class Camera:
def renderFrame(self):
"""generates a frame and draws it to the surface. Does not update screen; use pygame.display.flip()"""
font = pygame.freetype.SysFont("Comic Sans MS", 14)
winWidth, winHeight = self.surface.get_size()
winDistance = winWidth * numpy.cos(numpy.radians(self.hFOV)/2) / 2 #distance for a virtual screen to exist in-space to give the correct FOV
vecToCenter = Point.subtract(self.target.location, self.location)
@ -88,12 +96,14 @@ class Camera:
#pygame uses 0,0 as the top left corner
for obj in self.objects:
if type(obj).__name__ == "OrbitingBody":
sat = obj
lineToCamera = Line(obj.location, self.location)
intersectPoint = lineToCamera.intersectWithPlane(screenPlane)
if intersectPoint is not None:
intersectPoint = Point.add(intersectPoint, Point(int(winWidth/2), int(winHeight/2), 0))
pygame.draw.circle(screenSurface, (255,255,150), (int(intersectPoint.vector[0]), int(intersectPoint.vector[1])), obj.displaySize)
elif type(obj).__name__ == "Planet":
target = obj
lineToCamera = Line(obj.location, self.location)
intersectPoint = lineToCamera.intersectWithPlane(screenPlane)
if intersectPoint is not None:
@ -110,8 +120,17 @@ class Camera:
screenSurface = pygame.transform.flip(screenSurface, False, True)
#generate text
rho, theta, phi = sat.location.polar()
theta = math.degrees(theta)
phi = math.degrees(phi)
#textSurface, rect = font.render(f"Speed: {round(sat.velocity.magnitude())} m/s \nAltitude: {round(rho - target.radius)} m", False, (255,255,255))
font.render_to(screenSurface, (0,0), f"Speed: {round(sat.velocity.magnitude())} m/s \nAltitude: {round(rho - target.radius)} m", (255,255,255))
self.surface.blit(screenSurface, (0,0))
def renderImage(self, sat:"OrbitingBody"):
"""generates a single image and saves it to disk"""
frozenSat = sat.location
@ -126,8 +145,7 @@ class Camera:
satDistance = -1
#DEBUG
minlat = 1
curveCoeff = 1.1
for column in range(0, winWidth):
for row in range(0, winHeight):
@ -142,22 +160,34 @@ class Camera:
if self.target.location.distanceFromLine(worldLine) < self.target.radius:
epsilon = 0.1
yPrime = (row + screenPlaneOrigin.vector[1]) * (self.location.vector[2] / winDistance)
yPrime = min([abs((row + screenPlaneOrigin.vector[1]) * (self.location.vector[2] / winDistance)), self.target.radius])
yPrimeCurve = yPrime / (self.target.radius * curveCoeff)
xPrime = min([abs((column + screenPlaneOrigin.vector[0]) * (self.location.vector[2] / winDistance)), self.target.radius])
xPrimeCurve = xPrime / (self.target.radius * curveCoeff)
#treat yPrime like it's further from zero than it really is based on xPrime, and vice versa
yPrime /= math.sin(math.acos(xPrimeCurve))
xPrime /= math.sin(math.acos(yPrimeCurve))
try:
lat = math.modf((math.acos(yPrime / self.target.radius) / (3.141592/12.0)))[0] * math.sin(math.acos(xPrime / self.target.radius))
lat = math.modf((math.acos(yPrime / self.target.radius) / (3.141592/12.0)))[0] #pi/12 = 15 degrees
except:
screenSurface.set_at((column, row), (20,20,20))
continue
if lat < minlat:
minlat = lat
if -epsilon < lat < epsilon:
screenSurface.set_at((column, row), (200,200,200))
else:
try:
long = math.modf((math.acos(xPrime / self.target.radius) / (3.141592/6.0)))[0] #pi/6 = 30 degrees
except:
screenSurface.set_at((column, row), (20,20,20))
continue
if -epsilon < lat < epsilon or -epsilon < long < epsilon:
screenSurface.set_at((column, row), (180,180,180))
elif -epsilon < lat < epsilon and -epsilon < long < epsilon:
screenSurface.set_at((column, row), (255,255,255))
else:
screenSurface.set_at((column, row), (50,50,50))
#check if satellite is behind or in front of planet (or unobscured)
if screenSurface.get_at(satPixel) == (0,0,0):
circleBorder = 0
else: