dataset poking complete, time for stats
This commit is contained in:
parent
33daf6e3f1
commit
aa3334a2c3
|
@ -59,6 +59,7 @@ detections = pd.DataFrame(data=detectedDic) #this is our main object for detecti
|
|||
#define summary printing for multiple steps
|
||||
def summary(stage):
|
||||
print(f"Summary Stage {stage}")
|
||||
print(injections.head())
|
||||
print(f"Number of files injected: {len(Counter(injections['file']))}")
|
||||
print(f"Number of files with detections: {len(Counter(detections['file']))}")
|
||||
print("=========================")
|
||||
|
@ -76,12 +77,49 @@ summary(1)
|
|||
minDM = (10**2.5) * 0.95 #as per signal generation, plus a bit of wiggle room
|
||||
print(f"Filtering out pulsars (DM below {int(minDM)}...)")
|
||||
detections = detections[detections['dm'] > minDM]
|
||||
detections = detections.reset_index(drop=True)
|
||||
summary(2)
|
||||
|
||||
#Let's do detection matching! Yaaaay!
|
||||
#What detections line up to which injections? This will determine which ones got missed entirely.
|
||||
#Define some kind of epsilon for DM and pulse width; if detection is within epsilon in both DM and PW we can match it.
|
||||
dmEps = 0.05
|
||||
pwEps = 0.2
|
||||
#and define an auxiliary array of bools for injections containing the "is matched?" information.
|
||||
isMatched = [False] * len(injections['dm'])
|
||||
#Define some kind of epsilon for DM and pulse width; if detection is within epsilon in DM we can match it.
|
||||
dmEps = 5
|
||||
#and define an auxiliary array of 0s for injections. List of detection counts!
|
||||
matchCount = np.zeros(len(injections['dm']), dtype=int)
|
||||
#also keep track of false positives:
|
||||
falsePositiveMask = [False] * len(detections['dm'])
|
||||
#Use queries to find matches
|
||||
for detection in detections.itertuples():
|
||||
qstring = (
|
||||
f"(file == '{detection.file}') & "
|
||||
f"((dm - @dmEps) < {detection.dm}) & "
|
||||
f"((dm + @dmEps) > {detection.dm})"
|
||||
)
|
||||
matches = injections.query(qstring)
|
||||
if len(matches) > 0:
|
||||
print(f"Detection: DM {detection.dm} and PW {detection.pulseWidth}")
|
||||
print(matches)
|
||||
if len(matches) == 1:
|
||||
i = matches.index[0]
|
||||
matchCount[i] += 1
|
||||
print("======")
|
||||
elif len(matches) > 1:
|
||||
raise ValueError("MULTIPLE MATCHES OHNO")
|
||||
else: #no matching injection...
|
||||
falsePositiveMask[detection.Index] = True
|
||||
print(f"NO MATCH FOR: DM {detection.dm} and PW {detection.pulseWidth}")
|
||||
print("Injections in file:")
|
||||
print(injections.query(f"(file == '{detection.file}')"))
|
||||
matchMaskInj = [matchCount > 0]
|
||||
matchMaskDet = np.logical_not(falsePositiveMask)
|
||||
missedMask = [matchCount == 0]
|
||||
|
||||
#So where are we?
|
||||
#We have multiple datasets.
|
||||
#1. List of all injected pulses. [injections]
|
||||
#2. List of detections with pulsars filtered out. [detections]
|
||||
#3. Number of times each injection was detected [matchCount]
|
||||
#4. A mask for only detected injections [matchMaskInj]
|
||||
#5. A mask for only true positives [matchMaskDet]
|
||||
#6. A mask for only missed injections [missedMask]
|
||||
#7. A mask for false positives [falsePositiveMask]
|
Loading…
Reference in a new issue