Compare commits
2 commits
0d3371ecf7
...
aa3334a2c3
Author | SHA1 | Date | |
---|---|---|---|
![]() |
aa3334a2c3 | ||
![]() |
33daf6e3f1 |
125
testanalysis.py
125
testanalysis.py
|
@ -0,0 +1,125 @@
|
|||
import os
|
||||
from collections import Counter
|
||||
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
|
||||
def linesplit(line):
|
||||
"""
|
||||
Splits line of file into useful components.
|
||||
|
||||
Returns (dm, pulse width, originating filename).
|
||||
"""
|
||||
|
||||
dm, line = line.split("pc/cc")
|
||||
dm = int(dm)
|
||||
pw, fname = line.split(" s ")
|
||||
pw = float(pw)
|
||||
fname = fname.strip().removesuffix("_injected")
|
||||
return (dm, pw, fname)
|
||||
|
||||
def updateDic(lines, dic):
|
||||
"""
|
||||
Processes a list of lines and adds them to given dictionary in-place.
|
||||
"""
|
||||
|
||||
for line in lines:
|
||||
dm, pw, fname = linesplit(line)
|
||||
dic["file"].append(fname)
|
||||
dic["dm"].append(dm)
|
||||
dic["pulseWidth"].append(pw)
|
||||
|
||||
injectedDic = {
|
||||
"file" : [],
|
||||
"dm" : [],
|
||||
"pulseWidth" : []
|
||||
}
|
||||
|
||||
detectedDic = {
|
||||
"file" : [],
|
||||
"dm" : [],
|
||||
"pulseWidth" : []
|
||||
}
|
||||
|
||||
#load injected data into dataframe
|
||||
with open(os.path.join(".","out","2025-07-31T17-25-54.txt"), "r") as file:
|
||||
lines = file.readlines()
|
||||
updateDic(lines, injectedDic)
|
||||
|
||||
injections = pd.DataFrame(data=injectedDic) #this is our main object for injection data
|
||||
|
||||
#load detection data into dataframe
|
||||
with open(os.path.join(".","out","plotOut.txt"), "r") as file:
|
||||
lines = file.readlines()
|
||||
updateDic(lines, detectedDic)
|
||||
|
||||
detections = pd.DataFrame(data=detectedDic) #this is our main object for detection data
|
||||
|
||||
#define summary printing for multiple steps
|
||||
def summary(stage):
|
||||
print(f"Summary Stage {stage}")
|
||||
print(injections.head())
|
||||
print(f"Number of files injected: {len(Counter(injections['file']))}")
|
||||
print(f"Number of files with detections: {len(Counter(detections['file']))}")
|
||||
print("=========================")
|
||||
print(f"Number of pulses injected: {len(injections['dm'])}")
|
||||
print(f"Number of pulses detected: {len(detections['dm'])}")
|
||||
print("=========================")
|
||||
print(f"File ratio: {round(len(Counter(detections['file']))/len(Counter(injections['file'])), 3)}")
|
||||
print(f"Detection ratio: {round(len(detections['dm'])/len(injections['dm']), 3)}")
|
||||
print("=========================")
|
||||
|
||||
#print initial summary
|
||||
summary(1)
|
||||
|
||||
#many files contained pulsar bursts, so we filter those out via DM
|
||||
minDM = (10**2.5) * 0.95 #as per signal generation, plus a bit of wiggle room
|
||||
print(f"Filtering out pulsars (DM below {int(minDM)}...)")
|
||||
detections = detections[detections['dm'] > minDM]
|
||||
detections = detections.reset_index(drop=True)
|
||||
summary(2)
|
||||
|
||||
#Let's do detection matching! Yaaaay!
|
||||
#What detections line up to which injections? This will determine which ones got missed entirely.
|
||||
#Define some kind of epsilon for DM and pulse width; if detection is within epsilon in DM we can match it.
|
||||
dmEps = 5
|
||||
#and define an auxiliary array of 0s for injections. List of detection counts!
|
||||
matchCount = np.zeros(len(injections['dm']), dtype=int)
|
||||
#also keep track of false positives:
|
||||
falsePositiveMask = [False] * len(detections['dm'])
|
||||
#Use queries to find matches
|
||||
for detection in detections.itertuples():
|
||||
qstring = (
|
||||
f"(file == '{detection.file}') & "
|
||||
f"((dm - @dmEps) < {detection.dm}) & "
|
||||
f"((dm + @dmEps) > {detection.dm})"
|
||||
)
|
||||
matches = injections.query(qstring)
|
||||
if len(matches) > 0:
|
||||
print(f"Detection: DM {detection.dm} and PW {detection.pulseWidth}")
|
||||
print(matches)
|
||||
if len(matches) == 1:
|
||||
i = matches.index[0]
|
||||
matchCount[i] += 1
|
||||
print("======")
|
||||
elif len(matches) > 1:
|
||||
raise ValueError("MULTIPLE MATCHES OHNO")
|
||||
else: #no matching injection...
|
||||
falsePositiveMask[detection.Index] = True
|
||||
print(f"NO MATCH FOR: DM {detection.dm} and PW {detection.pulseWidth}")
|
||||
print("Injections in file:")
|
||||
print(injections.query(f"(file == '{detection.file}')"))
|
||||
matchMaskInj = [matchCount > 0]
|
||||
matchMaskDet = np.logical_not(falsePositiveMask)
|
||||
missedMask = [matchCount == 0]
|
||||
|
||||
#So where are we?
|
||||
#We have multiple datasets.
|
||||
#1. List of all injected pulses. [injections]
|
||||
#2. List of detections with pulsars filtered out. [detections]
|
||||
#3. Number of times each injection was detected [matchCount]
|
||||
#4. A mask for only detected injections [matchMaskInj]
|
||||
#5. A mask for only true positives [matchMaskDet]
|
||||
#6. A mask for only missed injections [missedMask]
|
||||
#7. A mask for false positives [falsePositiveMask]
|
Loading…
Reference in a new issue